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Abstract

In this paper we describe a new, low-overhead technique for manipulating processor interrupt state in an
operating system kernel. Both uniprocessor and multiprocessor operating systems protect against unipro-
cessor deadlock and data corruption by selectively enabling and disabling interrupts during critical sections.
This happens frequently during latency-critical activities such as IPC, scheduling, and memory management.
Unfortunately, the cycle cost of modifying the interrupt mask has increased by an order of magnitude in
recent processor architectures. In this paper we describe optimistic interrupt protection, a technique which
substantially reduces the cost of interrupt masking by optimizing mask manipulation for the common case
of no interrupts. We present results for the Mach 3.0 microkernel operating system, although the technique
is applicable to other kernel architectures, both micro and monolithic, that rely on interrupts to manage
devices.
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1 Introduction

This paper describes a new technique, optimistic interrupt protection, that efficiently schedules and handles
processor interrupts. While modern processor architectures have led to substantial overall performance
improvements, operating systems have received significantly less benefit than application code [1, 2, 3]. One
processor function that has not scaled well with processor speed is interrupt management. Operating systems
use interrupts to control scheduling and I/O, and use interrupt masking to guarantee integrity of system
resources shared across interrupt levels. This approach was efficient in many previous processor architectures
(e.g, VAX), where the cost changing interrupt levels was small - generally less than ten instructions [4, 5].
In modern architectures, however, interrupt masking may be up to an order of magnitude more expensive,
contributing to poorer performance of system code.

Optimistic interrupt protection avoids the performance penalty of interrupt mask manipulation while
preserving the semantics of the interrupt model. We have implemented optimistic interrupt protection in
the Mach 3.0 microkernel for several different processor architectures. For example, on the Omron Luna88k,
we observed a 50% reduction in interrupt management overhead, resulting in a 5.3% speedup for interprocess
communication.

The rest of this paper describes the technique and its performance. In Section 2 we review the basic
problems introduced by interrupts, discuss the general model of interrupt handling into which optimistic
interrupt protection fits, and motivate the need for a high performance mechanism. In Section 3 we describe
the use and implementation of optimistic interrupt protection. In Section 4 we discuss related work. Finally,
in Section 5 we present our conclusions.

2 Interrupt management

Operating systems generally rely on interrupts to respond to externally or internally generated asynchronous
events. Because interrupts introduce concurrency into the operating system kernel, system-level mechanisms
are necessary to avoid deadlocks and protect system data structures from concurrent accesses. Interrupt
masking is a common technique for data protection in the presence of asynchronous events. Access to a
potentially concurrent data is protected by setting the processor interrupt level to prevent all events that
could potentially alter the data in question. Interrupt masking has been used successfully in a large number
of operating systems, including Mach, Unix, VMS, and NT [6, 7, 5, 8]. It maps well onto a diverse array
of hardware, from systems with a single interrupt level to processors with a rich interrupt structure [9, 101.
On a uniprocessor, no additional synchronization constructs are required. An important property of the
interrupt masking model is that iatency-sensitive events can preempt long-running low priority activities.
Although alternatives to the interrupt model have been proposed [11, 12], simplicity, as well as the significant
investment in existing system code and programmer experience provide significant economic incentives for
preservation of interrupts as a model of system data protection.

Traditionally, interrupt masking has been efficient, requiring only a few cycles. Unfortunately, the time
required to modify the hardware interrupt level has not scaled with processor speed improvements. In
pipelined processors, writing the processor interrupt mask typically requires a pipeline flush [13, 14]. In
superscalar systems, interrupt level manipulations require scalar instruction issue, further limiting perfor- 0'
mance [15]. Many recent RISC CPU implementations provide only a part of the interrupt mask logic on the
processor package, with the remainder of interrupt masking implemented by off-processor hardware (13, 14]. TA8
For these systems, interrupt masking is a three step process: 1) disable processor interrupts, 2) write the ,ouoced
off-chip mask register(s), and 3) finally reenable processor interrupts. The first stage requires a pipeline flush, ,call
and the second stage requires a potentially expensive off-chip access. This represents a significant increase
in the relative latency of interrupt mask manipulations. Table I shows the cost of a general interrupt mask
raise/lower pair within the Mach 3.0 microkernel on a variety of architectures.
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Machine Processor Instructions Cycles
Luna88k Motorola 88100 (25Mhz) 68 96
Flamingo Alpha 21064 (150Mhz) 25 21
DECstation 5000/120 R3000 (20Mhz) 65 80
DECstation 5000/200 R3000 (25Mhz) 14 14
386 PC Intel 386DX-25 (25Mhz) 51 179
Gateway 66V Intel 486DX2-66 (66Mhz) 51 279

Table 1: Overhead of changing the interrupt mask. Cycle counts are estimated, assuming no cache misses.

3 Optimistic interrupt protection

Optimistic interrupt protection exploits the fact that, in the common case, interrupts do not occur during

critical sections. When a processor executing in the kernel enters a critical section, its sets a software
interrupt mask, which indicates the interrupts that need to be masked. The hardware interrupt mask is not

changed. In the uncommon case that a lower-priority interrupt does occur, the interrupt handler prologue

constructs an interrupt continuation (described below), updates the hardware interrupt mask as specified
by the software interrupt mask, and returns control to the interrupted activity. Updating the hardware
interrupt mask when the interrupt actually occurs prevents additional logically masked interrupts from

occurring until the deferred handler has been executed. Though not strictly necessary, this tends to simplify
the code. Moreover, it occurs after the interrupt, and is therefore off the anticipated fast path.

An interrupt continuation is a data structure containing the state of the system at the time an interrupt
is deferred. The interrupt continuation contains sufficient information to service the interrupt condition at
a later time. The amount of information is typically quite small (e.g, the program counter and interrupt
vector). At the end of the critical section, the processor checks for an interrupt continuation. Normally there
is none, and processing continues following the critical section. If an interrupt continuation does exist, the
processor handles the corresponding interrupt condition before resuming "normal" computation (see Figure
1). The interrupt continuation handles the deferred interrupt, restores the hardware interrupt mask to its
original level, and returns to the normal execution stream.

As with traditional interrupt control, optimistic interrupt protection defers the execution of a masked
interrupt handler until the end of the protected critical section. Unlike the traditional masking mechanisms,
it requires that the (hardware and software) execution of the interrupt prologue code be both allowed and
safe during protected sequences. As an example, if the interrupt prologue required a valid stack pointer, any
code which places the stack pointer in an invalid state could not use optimistic interrupt protection. For the
Mach 3.0 kernel, there are no such sequences on the Omron Luna88k, DECstation, or DEC Alpha.

In the optimistic case (the protected sequence runs without interruption), protection overhead is minimal.
One variable is set before the critical section, and at the end of the critical section that variable is reset
and another variable (corresponding to the interrupt continuation) is checked. In the Omron Luna 88k
implementation, this corresponds to two stores, one load and a test, all of which are exccuted by the
processor at full speed 1. Not only is protection overhead small, it also scales with processor performance.

Performance
We have implemented optimistic interrupt protection in the Mach 3.0 kernel on the Omron Luna88k and
Mips R3000 DECstation series. In both architectures, the interrupt continuation consisted of the register
state at the time of the trap and a few additional words of state. Implementation took less than 3 days
and and required no modification to assembler code rol,+ines. Table 2 shows the fast path overhead for
interrupt mrianagement on these architectures. This sequence replaces the interrupt mask manipulations of
Table 1. By using optimistic interrupt protection the length of the interrupt management path has been

1 These viriables could be kept in a registers, eliminating a&l memory accesse
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Firm I shows the actions of qonventiona (top) and opti- SEE interrupt management
mistic mterrupt protection (botrtom). When no interrupt occurs

fthe), conventional inte-upt protection incurs the expense ofivr normal execution
manipulating the hardware interrupt mask. In contrastT the opti- interrupt handler
mistic method only incurs the. expense of a few loads, stores and interrupt enter/exit

If an interrupt does occur (right), hardware masking defers the delivery of the interrupt umail the endof the critical section in the conventional case. The interrupt is delivered promptly with optimistic
intrupt protection, causing control to transfer to the interrupt hand.ler. The interrupt handler .reog-
n eizes tis interp is logically masked, constructs an interrupt continutation, sets the hardware inter-
rp mask to the logical maskr, and returns from the intenrupt. Since the interrpt mask is raised. the
critical section can run to completion without further interruption. When the critical section is done,
the kernel discovers the presence of an interrupt continuation, resets the hardware interrupt mask, and
executes the continuation. After the continuation is complete, the interrupt mask is cleared and normal
processing resumnes.

Figure 1: Conventional and Optimistic Interrupt Protection

roughly halved.

Machine Processor Instructions Cycles
Luna88k Motorola 88100 51 51
DECstation 5000/120 R3000 31 31
DECstation 5000/200 R13000 31 31

Table 2: Overhead of virtual interrupt mask manipulation. Cycle counts are estimated, assuming no cache
misses. The Luna88k is a multiprocessor, so the virtual interrupt state is maintained on a per CPU basis.
Most of the extra 20 cycles of overhead on the Luna88k are directly attributable to multiprocessor induced
array indexing computations.

To measure the impact of optimistic interrupt protection, we measured the performance of the Mach
interprocess communication path. This path has already been highly optimized and contains only one
interrupt protected critical section [16]. Table 3 shows the performance of a cross address space null RPC
with conventional and optimistic interrupt protection. The performance gain is larger than suggested by
Tables 1 and 2 due to the idealized nature of those numbers. Both tables assume no TLB misses, cache
misses, invalidation traffic or write buffer stalls; in practice, operating system code incurs a large contribution
to cycles per instruction from all these factors [2]. The reduction in path length and number of memory
references in the interrupt management path therefore produces a greater than predicted benefit.
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Machine Conventional Optimistic Speedup Cycles saved
Luna88k 4400 4225 5.3% 175
DECstation 5000/120 2140 1840 14% 300
DECstation 5000/200 1234 1198 2.9% 36

Table 3: IPC performance. Shown are the cycles for a null RPC with optimistic and conventional interrupt
management. One cycle on the Luna88k is 40 nanoseconds, so IPC latency is reduced by 7 microseconds
from 176 to 169. The cycle times on the 5000/120 and 5000/200 are 50 and 40 nanoseconds respectively.

4 Related Work

One of the fundamental design decisions in an operating system is how to handle coordination between
synchronous and asynchronous event handlers. Synchronous events happen within the context of the current
execution stream (e.g, a system call), while a given asynchronous event can occur in the context of any
instruction stream (e.g, I/O completion interrupts). Three approaches have been taken: interrupt masking
as previously described, non-preemptable handlers, and lock-free synchronization.

In the non-preemptable approach, both synchronous and asynchronous event handlers run uninterrupt-
ably to completion. The V kernel and many real time systems follow this approach [17, 18]. Unfortunately,
non-preemptable interrupt handlers impose serious constraints on handler structure: all handlers must be
short to ensure that the latency of high priority events is low, and handlers cannot containing blocking op-
erations (e.g. device status register polling). While this approach can lead to a high performance operating
systems, difficulties inherent in this code style have prevented its widespread use.

Recent research has demonstrated the use of highly concurrent lock-free data structures [19, 20]. A
system using lock-free synchronization can be free from data corruption, deadlock and priority inversion even
in the case of interrupts [21]. In addition, lock-free data structures provide the necessary synchronization
for both multiprocessors and nonpreemptive execution. Consequently, lock-free data structures suggest an
attractive approach for structuring operating systems. Unfortunately, lock-free data structures can require
special synchronization hardware that is neither generally available nor inexpensive [22, 13]2. Recently,
researchers have proposed architectural modifications to efficiently support lock-free operations [23].

The division of synchronization mechanisms into an inexpensive optimistic and (relatively more) ex-
pensive pessimistic case has been applied elsewhere. Restartable atomic sequences offers a mechanism for
constructing efficient user-level synchronization primitives in a preemptively scheduled environment [24]

5 Conclusions

Optimistic interrupt protection is an application of optimistic synchronization to interrupt priority manage-
ment in operating system kernels. It provides the same semantics as traditional interrupt management with
much less overhead. A measurable speedup of the IPC path in the Mach 3.0 microkernel was obtained by
using this technique. The method is applicable to any kernel that uses interrupt masking to guarantee data
integrity.
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